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APPLICATION OF STREAMWISE DIFFUSION TO 

OF LIQUID METALS 
TIME-DEPENDENT FREE CONVECTION 
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SUMMARY 
A numerical analysis is given for the application of streamwise diffusion to high-intensity flows with 
marginal spatial resolution. Terms are added to the momentum equation which are similar to those used 
in the Petrov-Galerkin, Taylor-Galerkin and balancing tensor diffusivity methods. Values for the 
streamwise viscosity are obtained from mesh refinement studies. An illustration is given for the time- 
dependent free convection of a liquid metal in a cavity with differentially heated sided walls. The spatial 
problem is solved with the Galerkin finite element method and the time integration is performed with the 
backward Euler method. Solution quality and computation time are compared for results with and without 
added streamwise diffusion. For the cases presented, streamwise diffusion eliminates spurious oscillations 
and saves computation time without compromising the solution. 

KEY WORDS Streamwise diffusion Taylor-Galerkin method Finite element method Free convection 
Liquid metals 

1. INTRODUCTION 

Transition flows between steady state laminar and turbulent are of interest in a wide variety of 
applications. One large class includes liquid metal flows in crystal growth, welding, casting 
and electron beam vaporization systems. High flow intensities results from strong buoyancy and 
surface tension forces and small metal viscosities. Often high spatial resolution is needed to 
obtain accurate solutions. If mass diffusion is included in the flow model, even greater resolution 
is required, since diffusivities for mass are smaller than for momentum. In either case this 
resolution can require excessive amounts of computing time for many two-dimensional and most 
three-dimensional problems. In the case of marginal or inadequate spatial resolution, spurious 
oscillations appear which may be expensive to track using time integration methods with error 
control. 

A number of investigators have addressed this problem by increasing the diffusive component 
in the direction of flow where it is needed most. In the direction normal to flow the diffuse 
component is left unchanged. Brooks and Hughes' developed a streamline upwind/Petrov- 
Galerkin formulation for flows dominated by convection. Weighting functions for the streamline 
diffusion terms depend on the mesh, time step and flow field. The method was successfully 
applied to a vortex-shedding problem at a moderate Reynolds number. Streamwise diffusion 
terms of similar form also appear in the development of Taylor-Galerkin methods for transient 
flows dominated by con~ec t ion .~ .~  It was found that these terms could also be of help in the 
elimination of spurious oscillations in steady state flows. In this case the theoretical base is 
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weaker and the use and weighting of the terms are largely empirical. Gresho et d4 employed 
these terms in balancing the negative tensor diffusivity generated by the forward Euler method. 
They also note the merits of applying this approach in an adhoc fashion to steady state problems. 

In this paper we employ streamwise diffusion terms of the same form, utilizing an empirical 
method to determine the coefficients. Mesh refinement studies are performed to determine the 
maximum convective component that can be resolved by a given mesh. For higher flow intensities 
streamwise diffusion is added so that the convective component does not exceed the maximum 
value. Application is given to the free convection system of Figure 1 which has been considered 
by a number of  investigator^.'-^ Temperature-induced buoyancy forces drive flow in a shallow 
two-dimensional cavity with vertical walls maintained at different temperatures. We employ the 
Galerkin finite element and backward Euler methods to obtain solutions at flow intensities as 
high as those encountered in electron beam vaporizers. Solution accuracy and computing time 
are compared for reference solutions and coarse mesh results with and without streamwise 
diffusion. 

2. BASIC EQUATIONS 

Consider a Newtonian liquid with constant physical properties, except the density which varies 
linearly with temperature according to the Boussinesq approximation. The non-dimensional 
mass, momentum and energy equations are 

v . v  = 0, 

J(Gr)Pr(aT at + v - V T )  = - V - q. 

The dimensionless total stress tensor 7c and heat flux vector q are given by 

R = p 6  - [VV + (VV)+], 
q = - V T .  

V, = v Y  D T =  0 I 
yI 0 

o x  4 

V, = v Y  = 0 ,  T = x 

(4) 

( 5 )  

Figure 1 .  Co-ordinates and boundary conditions for natural convection in a rectangular cavity. Point A is located at 
x = 0-8, y = 1 
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With ‘pluses’ denoting dimensional variables, the scaled variables are 

t = t+v,/h, x = x+/h ,  v = v + / v , ,  

R = n’h/pus, P = P+hIPUS, 

T = ( T +  - To)L/h(To - TI), q = q’LJk(T1 - To). 
Here h and L are the height and length of the trough respectively. Also, To and TI are the 
dimensional temperatures at  the boundaries x = 0 and x = 4 respectively. The properties p and 
k are the viscosity and thermal conductivity evaluated at To respectively. A velocity standard is 
obtained from a characteristic balance of buoyancy and inertial forces: 

v,  = [P(TI - To)ghZ/L]”2. (7) 

Here fi  is the volumetric thermal expansion coefficient. The dimensionless groups are 

Gr = P(Tl - To)gh4/v’L, Pr = v/u, St  = [ P ( T ~  - ~ , ) v ~ / g h ~ L ] ~ / ~ ,  (8) 

in which v and u are the kinematic viscosity and thermal diffusivity evaluated at To respectively. 
Note that the Reynolds, Peclet and Rayleigh numbers are related to the Grashof and Prandtl 
numbers by Re = Grl/’ ,  Pe = Gr‘l’Pr and Ra = GrPr respectively. 

The problem statement given by equations (1H3) is complete with the specification of initial 
and boundary conditions (see Figure 1). The initial condition for a time-dependent case is a 
steady state solution at a lower Grashof number. The momentum boundary conditions are a 
shear-free condition at the boundary y = 1 and no-slip conditions at all other boundaries. The 
temperature is maintained at different values at the two vertical boundaries and linearly 
interpolated values are used at the other two boundaries. 

3. NUMERICAL METHOD 

3. I .  Streamwise diflision 

At the high flow intensities of interest the effects of convection are quite important and high 
spatial resolution is needed to obtain accurate solutions. Unfortunately, this resolution currently 
requires excessive amounts of computing time for many 2D problems and most 3D problems 
of interest. Lower resolution leads to spurious oscillations which can be expensive to track in 
time. In order to reduce these oscillations, we add streamwise diffusion terms to the momentum 
equation (2) and the energy equation (3). The stress tensor (4) and heat flux vector ( 5 )  become 

11 = p S  - ((6 + y,vv).Vv + [(S + yvVV)*VV]+}, (9) 

q = -(6 + y,vv).VT. (10) 

It is seen that these expressions include isotropic terms corresponding to physical diffusion and 
added anisotropic terms with coefficients y y  and y,. For y v  = yQ = 0 equations (9) and (10) reduce 
to equations (4) and (5). By writing equations (9) and (10) in terms of velocity components 
tangent and normal to the direction of flow, it can be shown that the added diffusion terms are 
anisotropic in the direction of flow.4 Thus diffusion is added in the streamwise direction where 
it is needed most. 
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It is convenient to characterize the added diffusion for the momentum and energy equations 

(1 1) 

in terms of streamwise Grashof and Peclet numbers: 

Grsw = G r N  + Y J 2 ,  Pesw = Pe/(l  + 7.). 

In practice, some experimentation is required to find values of Grsw and Pe,, that reduce spurious 
oscillations without excessive damping of the solution. For liquid metals with small values of 
P r  the effects of convection are much more important for momentum than energy and it is 
frequently useful to make the choice of y I  = 0. The following empirical procedure can then be 
tested to obtain a value for Gr,, Time-dependent calculations are performed for several values 
of Gr and no streamwise diffusios ( y y  = 0). Mesh refinement is used to establish the presence of 
spurious oscillations. For a given mesh there will be a maximum value Grmax, above which 
spurious oscillations are unacceptably large. To eliminate these oscillations at higher values of 
Gr, we select Grsw = GrmaX. To assess accuracy, the results with streamwise diffusion should 
occasionally be compared with fine mesh results in which streamwise diffusion is absent. This 
procedure is illustrated below in Section 4. 

It is useful to consider earlier applications of streamwise diffusion terms similar to those in 
equations (9) and (10). Donea and co -worke r~ '~~  developed Taylor-Galerkin methods to provide 
for the accurate time integration of the thermal convection-diffusion equation for cases with 
large convective components. One of these methods, referred to as the 'splitting-up' method, 
introduces streamwise diffusion under steady state conditions. For steady flows separate Taylor 
series expansions are obtained for the convection and diffusion terms in the expression 

which is equation (3) with Pe = Gr1'2Pr (see Appendix I). These expansions are combined to 
give a result which includes terms of order (PeAt-' ,  PeAt', PeAt', . . .) and (At', At1, At', . . .) 
with At = t,+' - t , .  For large Pe we keep terms of order PeAt' and At' since they are the most 
important. The resulting Taylor-Galerkin expression for the convection-diffusion equation is 

Steady state conditions are applied and the resulting expression is written in the form 

This is the steady state convection-diffusion equation plus a Taylor-Galerkin term which 
introduces streamwise diffusion. The theoretical base for this term is questionable, since terms 
with At should vanish under steady state conditions. Nonetheless, it is still useful. Donea et d 3  
employed this term in a test problem for which convective components were large and spatial 
resolution was inadequate. Spurious oscillations were eliminated without compromising the 
solution. We use this same term in equation (10) with the coefficient PeAt/2 replaced by ya. A 
similar approach leads to the momentum diffusion term in equation (9). 

Brooks and Hughes' and Gresho et d4 arrived at results similar to equation (9) in their 
investigations of the Petrov-Galerkin method and the method of balancing tensor diffusivity 
respectively. The coefficient for the latter method includes At, similar to the Taylor-Galerkin 
method. However, the coefficient for the Petrov-Galerkin method is a more complex function 
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of the mesh, time step and flow field. These coefficients and weighting functions are applicable 
when specific time integration methods are employed. However, the use of streamwise diffusion 
terms can be much more general. They can be applied to both steady state and transient problems 
with a wide variety of numerical methods. If theoretical expressions are available, they can be 
used to select coefficients and weighting functions. Otherwise the mesh refinement approach of 
this paper can be employed. 

3.2. Spatial discretization and time integration 

The equations of change (1H3) are discretized in space using a mixed finite element basis set 
and Galerkin method.' On quadrilateral elements the velocity and temperature are expanded 
in terms of nine-node Lagrangian biquadratic polynomials and the pressure is expanded in terms 
of four-node bilinear polynomials. The residual expressions are formed for the equations of 
change (1H3) and the momentum and energy equations are written in the weak form. In this 
transformation the stress and heat flux terms are integrated by parts and IC and q in the surface 
integrals are replaced by equations (9) and (10). The physical boundary terms are specified using 
the conditions shown in Figure 1. The streamwise boundary terms vanish, since streamlines do 
not pass through boundaries. In the more general case of inflow and outflow boundaries these 
terms also vanish in the absence of momentum or energy fluxes across boundaries. 

Three meshes are used which are symmetric about the lines x = 2 and y = 0.5 (see Figure 2). 
Element boundary locations for the quadrant (0 I x I 2,O I y I 0.5) are given by 

xi = 2[ 1 - exp(2ai/ne,,)]/[ 1 - exp(a)], 

yi = Q[ 1 - exp(2ai/ne.,)]/[ 1 - exp(a)], 

i = 1, 2, . . . , nJ2, 

i = 1, 2, . . . , ne.,/2, 
(15) 

in which n e , x  and nr,, are the numbers of elements in the x- and y-directions respectively. The 
parameter a is used to stretch the mesh. In the limit a 0 the spacing of nodes is uniform 
in each co-ordinated direction. In this study we use a = 1.5 for the 48 x 18 mesh and a = 1 for 
the others. Finer discretizations are applied near the boundaries of the cavity to resolve boundary 
layers in velocity and temperature. 

The discretized equations are integrated in time using the backward Euler method with 
automatic error control.10*" A predictor-corrector method is used in which a calculated error 
e is kept close to a prescribed error E.  For the calculations presented below, we use E = 1 x 
in all cases. 

The non-linear algebraic equations are solved for v, p and T using the Newton-Raphson 

1 1 1 1 I 1 I I I I  I I 1  I I I I 1  1 I 1  I I I l 1 1 1 1 1 1  

Figure 2. 32 x 12 finite element mesh for natural convection in a rectangular cavity; 5304 unknowns with a = 1.0. 
Element locations are given by equations (15). Meshes not shown: 48 x 18 mesh, 11,698 unknowns with a = 1.5; 64 x 24 

mesh, 20,588 unknowns with a = 1 
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method, which linearizes the equations. This method is applied to all terms except the streamwise 
diffusion terms in equations (9) and (10). In steady state calculations these tensors are evaluated 
at the solution for the previous iteration as in a successive substitution method, while for 
time-dependent calculations they are evaluated at the predicted solution. The linear equation 
set is solved by Gaussian elimination using a modified frontal solver based on the one given by 
Hood.’ 

Using this formulation, streamwise diffusion terms can be added to an existing two- or 
three-dimensional finite element computer code with relatively little effort. Since equations (9) 
and (10) are not specific to the finite element method, application is readily made to finite 
difference, finite volume and other methods. 

4. RESULTS 

The application of streamwise diffusion is illustrated for the natural convection system of Figure 
1. We use Grashof numbers of 1 x lo6 and 1 x lo7 which overlap the range 1 x lo6 x Gr I 
1 x lo8 for electron beam vaporization of metals. In this work we use Pr = 0.015 which is 
representative for many liquid metal systems and is a value used in previous  investigation^.^-^ 
For the transport of energy we do not introduce streamwise diffusion in any of the calculations, 
since the effects of thermal convection are moderate with Pe I 47.4. However, for Gr = 1 x lo7 
streamwise diffusion is applied for the transport of momentum, since convective components 
are large (Re = 3162). In the following cases a mesh refinement study is performed at Gr = 
1 x lo6 to determine the coarsest mesh for which spurious oscillations are acceptable. This mesh 
is then employed at 1 x lo7 with and without streamwise diffusion. These results are then 
compared with a fine mesh solution. 

For the time-dependent calculations at Gr = 1 x lo6 we use the steady state solution at 
Gr = 2 x lo4 as an initial condition. Contours for the streamfunction and temperature are shown 
in Figure 3 for the three meshes. The smooth contours for the 64 x 24 mesh suggest that the 
flow field is well resolved and that streamwise diffusion is not needed. The flow is quite complex 
with at least four cells present at any time. Some spurious oscillations are present for the 32 x 12 
mesh but are essentially absent for the 48 x 18 mesh. It also appears that the timing of flow 
events is slightly different for the three meshes. 

The velocity component v, at location A (see Figure 1) is plotted versus time in Figure 4. As 

T,  64x24 +, 64x24 

+, 32x12 +, 48x18 

Figure 3. Streamlines and temperature contours for Gr = 1 x lo6 at t = 7.0 
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Figure 4. Time step size and u, at location A for Gr = 1 x lo6: - , 64 x 24; ---, 48 x 18; ........, 32 x 12 

the mesh is refined, many of the higher-frequency fluctuations in u , , ~  are reduced or eliminated. 
The profiles for uXsA appear to be converging with mesh refinement, but there are still differences 
between the results for the 48 x 18 and 64 x 24 meshes. Based on these results, the spurious 
oscillations are judged to be acceptable for the 64 x 24 and 48 x 18 meshes but not for the 
32 x 12 mesh. 

Time-dependent calculations were performed for Gr = 1 x lo7 using the steady state solution 
at Gr = 1 x lo4 as an initial condition. Simulations were performed without streamwise diffusion 
for the 48 x 18 and 64 x 24 meshes and with diffusion for the 48 x 18 mesh. In the latter case 
we selected Gr,, = 1 x lo6, since spurious oscillations are acceptable small for the case with 
Gr = 1 x lo6, the 48 x 18 mesh and no added streamwise diffusion (see Figures 3 and 4). 

Streamlines are plotted at t = 7.0 for the three cases (see Figure 5). For the 64 x 24 mesh the 
smooth contours indicate that the flow field is adequately resolved. For the 48 x 18 mesh the 
addition of streamwise diffusion eliminates spurious oscillations without altering the key features 
of the solution. However, the added diffusion reduces flow variations in the streamwise direction. 
Streamlines are unnaturally 'straightened' as is somewhat evident in the two primary cells of 
Figure 5. Thus streamwise diffusion must be added judiciously. Temperature contours are also 

Q, 64x24 T, 64x24 

Figure 5. Streamlines and temperature contours for Gr = 1 x lo7 at t = 7.0. Streamwise viscosity is added if a value of 
Grsr is given 
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-2 

Table I. CPIJ time for cases with Gr = 1 x lo7 

-1 a 

01 

0 

Mesh Grsw Number of time steps Total CPU time* (h) 

48 x 18 1 x lo7 1059 343 
48 x 18 1 x lo6 677 219 
64 x 24 1 x lo' 399 353 

r- , - 4 

- 1- 

, 2 - 2 5  - 1 -  

- 
- 
- - 
- - -3 .__ 

- - - - - - - -. 
- 

I ' I '  ' I I ' ' 1 ) '  
- 

* CPU time on a DECstation 3100 required to reach t = 8.0 

shown in Figure 5 for the 64 x 24 mesh. The curved contours reveal moderate thermal 
convection which is well resolved by all the meshes. 

The time step size is plotted versus time in Figure 6 for the three cases. Values of At first 
increase and then decrease as the flow accelerates and increases in intensity. For t > 2 values 
of At are largest for the fine 64 x 24 mesh, followed by the 48 x 18 mesh with Gr,, = 1 x 10". 
For the 48 x 18 mesh and no added diffusion the values of At are significantly smaller. The 
smaller steps are needed to track the spurious oscillations resulting from inadequate spatial 
resolution. 

Evolutionary plots for u , , ~  are shown in Figure 6. The results of all three cases are similar 
for the period 0 I t I 5 in which the flow accelerates. As the flow intensity increases for t 2 5, 
differences in the solutions are much more significant. Comparison between the results for the 
48 x 18 and 64 x 24 meshes shows that spurious oscillations are present for the coarser mesh. 
With the introduction of streamwise diffusion (Grs, = 1 x lo6) these spurious oscillations are 
reduced in magnitude and frequency without harming the solution. For the 48 x 18 mesh there 
is a 36% saving in computation time, since fewer steps are required to track the solution (see 
Table I). In addition, the solution with streamwise diffusion requires 38% less computing time 
than the fine mesh solution. 

5. CONCLUSIONS 

The key result is the application of streamwise diffusion to a liquid metal flow with high intensity. 
The method is generally applicable to time-dependent transport systems with strong convective 
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components. Terms are added to the convection-diffusion equations which are in many respects 
similar to those in the Taylor-Galerkin, Petrov-Galerkin and balancing tensor diffusivity 
approaches. These streamwise diffusion terms are simple in form and readily implemented. The 
maximum resolvable convective component is determined from mesh refinement studies and 
coefficients for the streamwise diffusion terms are specified using scaling relationships. 

Application is made to a transient liquid metal flow in a shallow cavity with differentially 
heated side walls. A mesh refinement study yields a maximum tolerable Grashof number of 
1 x SO6 for an 18 x 48 mesh. For the same mesh with Gr = 1 x lo7 streamwise viscosity is 
added to keep the streamwise Grashof number at 1 x lo6. Comparison with a reference solution 
and results without streamwise viscosity reveals that spurious oscillations are reduced without 
compromising the solution. In addition, there is a significant saving in computation time. 
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APPENDIX I :  THE SPLITTING-UP TAYLOR-GALERKIN (TG) METHOD 

Donea et al. developed the splitting-up TG method to provide streamwise diffusion under steady 
state conditions. Consider the advection-diffusion equation (12) for steady flow. Separate TG 
expressions are developed for the advection and diffusion terms using the Taylor series 

The TG advection expression is obtained from 

in which T" denotes a solution to this expression. For an incompressible liquid 

v * VT = V * (vT).  (18) 

Insertion of this expression into equation (17) and a second differentiation with respect to time 
gives 

Equations (17) and (19) are inserted into equation (16), keeping terms of O(At2). The resulting 
TG expression for the advection equation (17) is 

At 
At 2 

+ V-VT: = - V.(VV-VT:). T:+l - T:: _____ 
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The TG diffusion expression is developed from 

This expression and its time derivative are inserted into equation (16) to give 

The term dT,/at is replaced by (T,+, - T,)/At to yield the TG expression for the diffusion 
equation as 

The solution procedure developed by Donea et al.' proceeds as follows. With a solution T, 
available, the TG advection equation (20) is solved for T;+ with Ti = T,,. Then the TG diffusion 
equation (23) is solved for T:+ with T: = Ti+l .  The solution at t n + l  is T,+, = T:+,. To form 
a single TG expression, equation (20) is inserted into equation (23), consistent with the above 
procedure. Keeping terms of low order gives equation (13). 

APPENDIX 11; NOMENCLATURE 

height of cavity 
length of cavity 
outward-pointing unit vecor for flow boundary 
terms of order At or larger 
dimensionless isotropic pressure 
dimensionless heat flux vector 
dimensionless temperature 
temperature at x = 0 and x = 4 (T) 
dimensionless time 
dimensionless velocity vector 
characteristic velocity; see equation (7) (L/t) 
dimensionless x- and y-components of velocity vector 
value of v, at location A; see Figure 1 

Greek letters 

thermal diffusivity (L2/t) 
thermal coefficient of volumetric expansion, -(a In p/aT),  (l/T) 
dimensionless coefficients for streamwise diffusion terms; see equations (9) and (10) 
unit tensor 
unit vector in direction k 
error specification for time integration 
viscosity (M/Lt) 
momentum diffusivity (L2/t) 
dimensionless total stress tensor defined in equations (4) and (9) 
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P density (M/L3) 
4 dimensionless streamfunctions 

Superscripts 

a 
d 
+ dimensional quantity 

solution to thermal advection equation (17) 
solution to thermal diffusion equation (21) 

Subscripts 

n index for time step 
x, Y x- and ydirections 
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